文章詳情
ARTICLE DETAILS

2024年中國科學(xué)技術(shù)大學(xué)非全日制研究生招生考試《數(shù)學(xué)分析》考試大綱

  一、考試范圍及要點

  1. 實數(shù)和數(shù)列極限

  數(shù)列和收斂數(shù)列,收斂數(shù)列的性質(zhì),單調(diào)數(shù)列,基本列和Cauchy 收斂原理,上下確界,上極限和下極限,Stolz 定理。

  2. 單變量函數(shù)的微分學(xué)和積分學(xué)

  函數(shù)的極限,無窮小與無窮大,連續(xù)函數(shù),連續(xù)函數(shù)與極限計算,有限閉區(qū)間上連續(xù)函數(shù)的性質(zhì),函數(shù)的一致連續(xù)性,函數(shù)的上極限與下極限。導(dǎo)數(shù)的定義和計算,復(fù)合求導(dǎo),高階導(dǎo)數(shù),F(xiàn)ermat 定理,Rolle 定理,Cauchy 定理,函數(shù)的極值,L’Hospital 法則,利用導(dǎo)數(shù)研究函數(shù),凸函數(shù)。帶Lagrange 余項和Cauchy 余項的Taylor 定理。Riemann 積分的性質(zhì)。

  3. 多變量函數(shù)的微分學(xué)和積分學(xué)

  多變量函數(shù)的極限,多變量連續(xù)函數(shù),連續(xù)映射,方向?qū)?shù)和偏導(dǎo)數(shù),多變量函數(shù)的微分,復(fù)合求導(dǎo),高階偏導(dǎo)數(shù),Taylor 定理,極值和條件極值。矩形區(qū)域上的積分,矩形區(qū)域和有界區(qū)域上二重積分的計算,二重積分換元,三重積分。第一型和第二型曲線積分,Green 公式。曲面積分,第一和第二型曲面積分,Gauss 公式和Stokes 公式。

  4. 級數(shù)理論

  無窮級數(shù)的基本性質(zhì),正項級數(shù)收斂判別法,一般項級的 Cauchy 收斂原理,Dirichlet和Abel 判別法,絕對收斂和條件收斂,函數(shù)項級數(shù),一致收斂,極限函數(shù)與和函數(shù)的性質(zhì),冪級數(shù),函數(shù)的冪級數(shù)展開。

  5. 反常積分及含參變量的積分

  非負函數(shù)無窮積分的收斂判別法,第二積分中值定理,無窮積分的 Dirichlet 和Abel 判別法,瑕積分的收斂判別法。含參變量的常義積分,含參變量反常積分的一致收斂,含參變量反常積分的性質(zhì),Gamma 函數(shù)和Beta 函數(shù)。

  6. Fourier 分析

  周期函數(shù)的 Fourier 級數(shù),F(xiàn)ourier 級數(shù)的收斂定理,平方平均逼近,Parseval 等式,F(xiàn)ourier積分和Fourier 變換。

  二、考試形式與試卷結(jié)構(gòu)

  考試形式::閉卷

  試卷結(jié)構(gòu)::滿分150 分,題目的形式為計算題和證明題。

  參考書目名稱 作者 出版社 版次 年份

  數(shù)學(xué)分析教程(上,下) 常庚哲,史濟懷中國科學(xué)技術(shù)大學(xué)出版社3 2012

報名申請
請?zhí)峁┮韵滦畔ⅲ猩蠋煏M快與您聯(lián)系。符合報考條件者為您提供正式的報名表,我們承諾對您的個人信息嚴格保密。
姓名*
最高學(xué)歷/學(xué)位*
提 交
恭喜你,報名成功

您填的信息已提交,老師會在24小時之內(nèi)與您聯(lián)系

如果還有其他疑問請撥打以下電話

40004-98986
0/300
精彩留言